

The Space Rider System Project END-TO-END BUSINESS DEVELOPMENT WALKTHROUGH

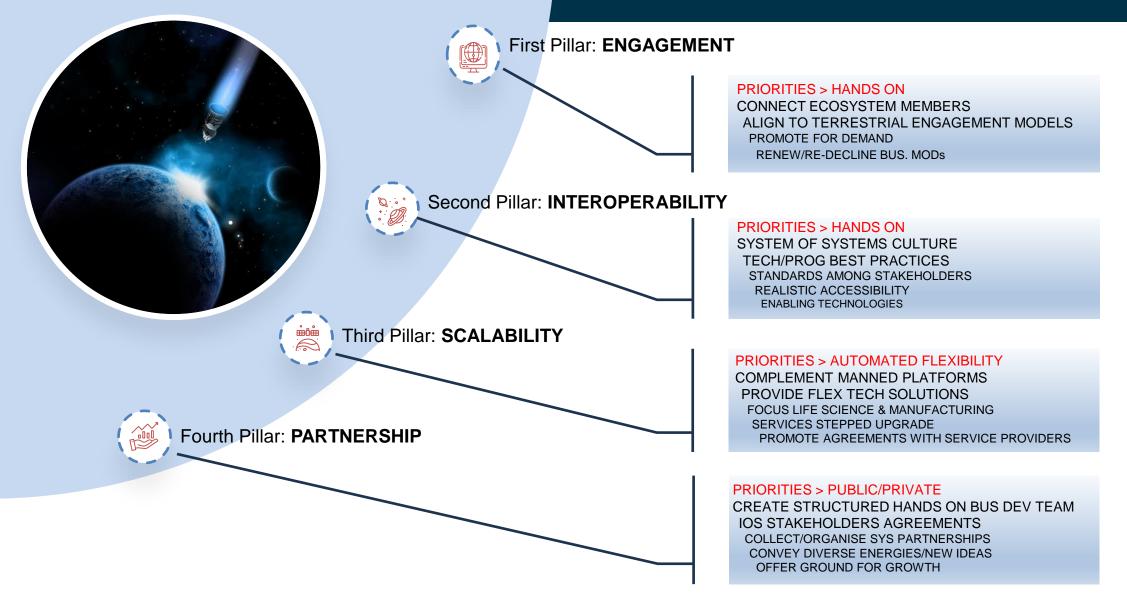
STE 2024

Space Transportation Ecosystem Conference

F. Caramelli Space Rider Payloads and Exploitation Manager

Munich, 27/06/2024

ESA UNCLASSIFIED - For ESA Official Use Only


STEP ONE

SPACE RIDER PILLARS OF BUSINESS DEVELOPMENT

Each of which action-oriented and leading to the fulfilment of a new sustainable and scalable landscape for a new paradigm in the development of technologies to commercialization

SPACE RIDER PILLARS OF BUSINESS DEVELOPMENT

STEP TWO

SPACE RIDER COMMERCIAL SEGMENTS

To enhance the potential usefulness of unmanned platforms for a mixed institutional and private partnership thanks to the ESA Space Rider platform service flexibility

SPACE RIDER COMMERCIAL SEGMENTS

SPACE RIDER has multiple offerings geared towards 5 commercial segments

SR Transportation System

Transportation Vehicle to support **Commercial Service Provider Facilities and Capability**

SR Qualification System

Pre-eminent IOV and IOD qualification platform

SR ISS Alternative

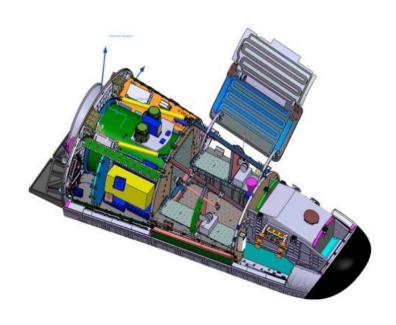
Options for oversubscribed and soon to be de-commissioned ISS

Microgravity as a Service

Platform that supports a wide range of life and physical science applications

In-Orbit Servicing

Pioneering the interoperability in LEO platforms


SPACE RIDER TRANSPORTATION SYSTEM

SR TRANSPORTATION SYSTEM

POTENTIAL SERVICE **PROVIDERS**

END-USER APPLICATIONS

OBSERVATION

Multi-use Satellites Precious Metal Locals **Ecosystem Dynamics** Ocean Observation Weather Forecasting Disaster Prediction Migration Patterns Microwave Radiometry

Airlines & Hotels **Beverage Companies** Relativity Space, Plastics Manufacturers Telesat.Thinkom, Hiber. **Big Agricultural Firms** Capella Space, Dish,

TECHNOLOGY

Robotics Transportation Tech Clean Fuels Thermal Processes Water Purification Imaging Tech **LEO Cloud Computing**

> Boston Dymanics ABB Ltd. iRobot Siemans, GE Energy, Bosch, Hitachi Honeywell, IBM, AWS,

IN-ORBIT TECH

Transport Systems Resupply to Stations Orbital Trash Removal Satellite Access/ Repair Astronaut Training Systems Upgrades Repairs & Maintenance NASA Patent Access

Trans/Logistics Firms Governments Defense Contractors Northrop, Raytheon General Dynamics

BIOTECH

SHELF-LIFE

Agritech/ Plant Growth

BioDegradables

Air Purification

Packaging

Chemicals

Cosmetics

Food & Beverage

Pharmaceuticals

Protein Crystalization Vaccines & Antibiotics Biomarker Discovery Regenerative Medicine Stem Cell Therapy Tissue Generation Cold Plasma Anti-Aging

Pfizer, Novartis, Merck J & J. Sanofi, Roche Glaxo Smith Kline, Bayer, Eli Lilly, Amgen Gilead Sciences, Abbott

MEDICAL

Bone Adhesives Stents Telemedicine Tech Wearable Diagnostics Exoskeleton Tech Robotics Thermal Sensors 3D Scanning

Phillips, GE, Siemens, Boston Scientific. Baxter, Danaher,

MATERIALS

Intel, Nvidia, AMD,

Texas Instruments.

Qualcomm, Micron

Precision Castparts

Oil & Gas Semi Conductors Polymer and Films Water Conservation Multilavered Barriers Infectious Disease Industrial Casting Cardiovascular System **Functional Fabrics** Cerebrovascular Flow 3D Printing Capillary Flow **Frictionless Coatings Precious Metals**

> Saudi Aramco, Shell, BP Dow Chemical Anheuser-Busch, Coca-Cola, Nestle, Pepsico,

R&D

Cellular Biology Pharmaceuticals Chevron, ExxonMobil

SPACE RIDER FEATURES

COMPLEMENT TO MANNED STATIONS

As the ISS is planned to be deorbited we will need more real state in Space to allow for testing, superior R&D, and manufacturing for the non-traditional space industry. Space Commerce Matters has calculated a **Total Addressable**Market of more than 800M€ for this activity

SR ISS Complement

Options for oversubscribed and soon to be de-commissioned ISS

ACCESSIBLE TRADITIONAL AND NEW MARKET AREAS

Space Rider unique uncrewed configuration sets it apart from new private space stations and cargo vehicles, as it accelerates autonomous manufacturing, research of more complex pathogens, and many more activities

Crystallization

Larger more ordered structures can be obtained in microgravity

Cell Biology

Microgravity effects cell's behavior, gene expression, and allows 3D structures to form without the use of a scaffolding or matrix

Microorganisms

The diffusion driven environment of space induces changes in the behavior and virulence of microorganisms

Fluid Dynamics & Transport Phenomena

Unique fluid behavior in microgravity can allow for easier studies of Multiphase Flows, Capillary Flow, Diffusion, Surface Tension, Separation and Agglomeration, Interfacial Behavior

Reaction Chemistry

Lack of gravitational forces can influence Chemical Product Formulation, Flow, Batch, Mixing Behavior, Combustion

STEP THREE

SPACE RIDER PRIORITIES PUT INTO ACTION

Actions extend from pure business development initiatives, to actual design initiatives aimed at preparation of the vehicle to create the Space Rider manifest of operations

SPACE RIDER COMMERCIAL SEGMENTS

SPACE RIDER priorities put into action

SR Transportation System

- **❖** INTEROPERABILITY
- **❖** PARTNERSHIP

LINKING SERVICE PROVIDERS AND END USERS

SR ISS Alternative

- ***** ENGAGEMENT
- SCALABILITY

CONNECT ISS OVERBOOKING AND FILL THE ACCESSIBLE GAP

SR Qualification System

SCALABILITY

SUPPORT DIVERSE EXP/QUAL NEEDS WITH FLEXIBLE SERVICES

Microgravity as a Service

- **❖** ENGAGEMENT
- **❖** INTEROPERABILITY

BACKBONE OF SPACE RIDER SERVICES

In-Orbit Servicing

- **❖** INTEROPERABILITY
- **❖** SCALABILITY

PREPARE TO FULFIL PREVAILING
MARKET, IMPLEMENT ADV MGMT
LOGIC

STEP FOUR

TAILORING SERVICE VALUE CHAINS

it would not be appropriate to look for a standard single business model for Space Rider, standing the complexity and variety of the possible forecasted applications and the uncertainties intrinsic in the current space market

TOUCH BASE ON VALUE CHAIN ANALYSIS

	Pharmaceutical / Life Science	Semiconductor / Advanced Materials	IOV/IOD	Technology Roadmap
Business Model	 Contract Research Organization Contract Manufacturing Organization Contract Development and Manufacturing Organization 	 R&D Mask Production Wafer Production Die Fabrication Package, Assembly and Test 	 TRL 5 - 6: Prototype TRL 6 – 7: Demonstration TRL 7 – 8: Flight Qualified TRL 8 – 9: Flight Proven Small Scale Manufacturing 	 Transportation Debris Removal Assembly / Construction Manufacturing Re-Supply Re-Entry Space Based Solar power
Pain Points	 Cost of raw materials or API Delays: process, efficiency, technology, maintenance Flexibility: batch volumes, quality, cost, dynamic pricing, and timelines 	 High costs / High Risks Increasing complexity especially around layered deposition Minimizing Thermal Stress Environmental Impacts (water, etc) 	 No Microgravity effects on ground Difficult to recreate in situ space phenomena Ground facilities full & expensive 	 Extensive technology roadmap with many new players and not many in-space qualification platforms
Pricing Model	Service Fee for CSPFacility RentalLicensing fee & RoyaltySubscription Fee	Fee for Product /Direct SalesFacility RentalService Fee for CSP	Price per kilogramService Bundle PackagePrice per mission	Price Per KilogramPrice per missionPrice per ULab as a service
Pricing Examples	 Fee for Product: Per batch or by weight of drug or drug-related product Example: For 500L of mammalian cell culture in 2019, the average batch price was approximately \$725k +/- \$150k 	 Fee for Product: Per batch or by weight - relevant for seed crystal material produced in space for use on Earth Increased pricing from terrestrial on the order of 100X terrestrial prices 	Bundle could include: Expert Advice Design for Space Support On-Ground Space Testing Live Data Return Results Analysis Support ESA checkmark on Space Qualified	 \$15K/Kg \$20K/ Kg \$20M for 100 Kg hydrazine \$120K for 6U \$90K per flight \$5M per mission

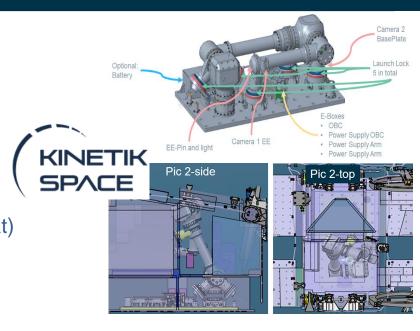
CONCRETE ESA AND PARTNERS ACTIONS TO DECLINE SUSTAINABLE AND SCALABLE VALUE CHAIN DESIGN WITH SELECTED STAKEHOLDERS TO CREATE PROOF OF CONCEPT REAL CASES

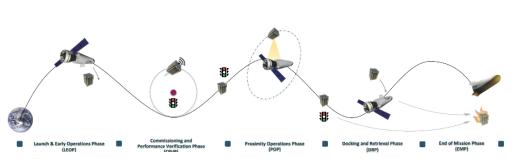
STEP ZERO

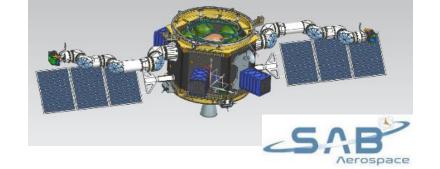
ENGINEERING WORKS

the "hands on" character of Space Rider project development allows efficient updates, enhancements and corrections for adherence to market evolutions.

INTEROPERABILITY AND IOS

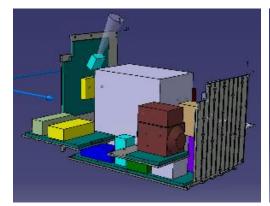

Space Rider as IOS / CPO

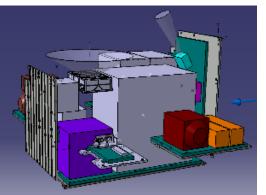

System studies ongoing and tech. dev. roadmap in preparation

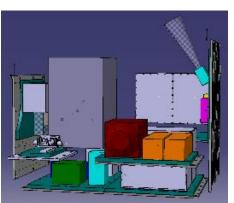

Following partner projects collaborations ongoing or offered by Space Rider

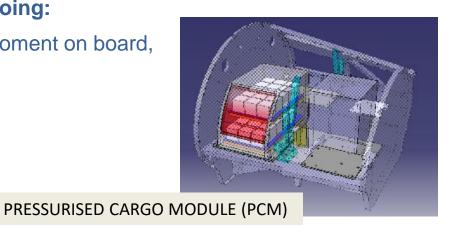
Deploy and Retrieval: TYVAK SROC (Space Rider Observation Cubesat)

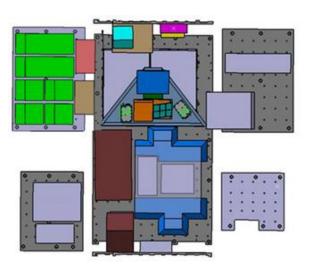
Joint Operations: SAB IOSHEX, Kinetik, PIAP, Space Villages



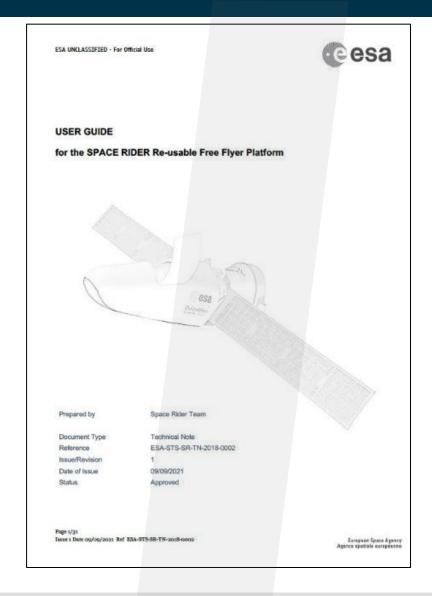

Cargo bay for maiden flight




Space Rider Payloads Aggregate design for the Maiden Flight is currently on going:


- 20 Payloads from both commercial and institutional customers are at the moment on board, representing various typologies of experiments:
 - √ Pharma/biotech micro-g R&D
 - √ Technology IOV/IOD
 - √ Physical science, remote sensing
 - √ In-orbit operation technologies and processes
- Continuous update of Aggregate Payloads composition according to End Users evolution is on going

Payload User Guide



CONTENTS

- Project highlights
- Cargo Bay Payload environment
- Payload Services
- Payload Operational cycle

ISSUES

- Issue 1 dated 09/09/2021 available
- Issue 2 dated 12/12/2023 released to the public

